
Novel algorithm for multi

dimensional regression of polynomes

with arbitrary coe�cients by means

of the method of least squares

Serge Zihlmann

ThirdWay

October 7, 2010

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

1 Abstract

The adjustment of polynomes to a given set of data is one of the most common meth-
odes of regression. Simple problems can easly be solved by use of standard programs.
Though, if userde�ned polynomes are required, the algorithms have to be de�nitely pro-
grammed since the system of equations become complex quite fast. The case is even
more demanding if the polynome depends of multiple variables.

In this framework exponent matrices are applied which are built up systematically and
represent the structure of the system of equations. Once these matrices are built as
many datapoints as demanded can be included.

The novel algorithm solves two problems at the same time. First the desired polynome
can easily be prompted in the shape of a potence matrix. Thus it can be adjusted within
seconds. Furthermore the dependence of multiple variables is handled with ease and it's
fast1.

11.45 seconds for 55'696 datapoints in 2 dimensions with 15 coe�cients in Scilab

S. Zihlmann October 7, 2010 Page 1 of 18

Contents

1 Abstract 1

2 Introduction 3

3 Description of the issue and solution 4

3.1 Method of least squares . 4
3.1.1 Minimisation of the total error . 4

3.2 New method for building up the system of equations 5
3.2.1 Exponent-matrices . 6
3.2.2 Sum of exponents . 6

3.3 Application . 8
3.4 Generalisation . 9

3.4.1 Expansion to several dimensions 9
3.4.2 Negative exponents . 9
3.4.3 Real exponents . 10

3.5 Limitation to linear systems . 10
3.6 Computing time . 10

4 Algorithm suggestion 11

4.1 Basic proposed Scilab algorithm . 11
4.2 Complete set of functions . 13

4.2.1 EvalPol() . 15
4.2.2 PrettyPrintF() . 16

4.3 Examples for calling the functions . 16
4.3.1 Example 1 . 16
4.3.2 Example 2 . 17

2

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

2 Introduction

There are plenty of algorithms which calculate polynome coe�cients to a given set of
data with the method of least squares using systems of linear equations. Many of them
are faster and also able to have a domain of many dimensions. This work doesn't claim
to enhance this situation. However, the weak point of many of these algorithms is that
the desired polynomes with their coe�cients have to be constantly included in the code
or that the coe�cients have to follow a given pattern in order the algorithm is able to
set up the system of equations. Conventional algorithms are for example intended to
adjust polynomes like

f(x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n (2.1)

to the data. A polynome with a de�ned domain in two dimensions coud have the
following shape:

f(x; y) = a0 + a1x+ a2y + a3xy + a4x
2y + a5xy

2 + a6x
2y2... (2.2)

In the second example often the highest potence can be entered. The coe�cients will
then be built up according the preliminary pattern. None of the coe�cients can then
be taken out what is often desired. Furthermore the algorithms build up their systems
of equations quite unclear.

The following algorithm eplained in this work is an easy solution to only calculate par-

ticular coe�cients. The construction of the system of equations would not anymore be
possible applying present algorithms. An example delivers the following polynome:

f(x; y) = a0 + a1x+ a2y
27 (2.3)

The coe�cients don't follow a pattern. Equations are complicated to be built up.

S. Zihlmann October 7, 2010 Page 3 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

3 Description of the issue and

solution

3.1 Method of least squares

A very demonstrative example delivers the following polynome de�ned in two dimensions
x & y with 4 coe�cients. A dataset consisting of x, y, z values must be given.

f(x; y) = a0 + a1x+ a2xy
2 + a3y

27 (3.1)

The error between a measured value zi and the regressed polynome is given as (i: ith
value):

ri = f(xi; yi)− zi (3.2)

On summation negative and positive regression errors are compensating. Thus the
signum of the error has to be eliminated. Therefore the error r is squared. Disadvante-
geous is that strong runaway values of a measurement count more.

ei = r2
i = (f(xi; yi)− zi)

2 (3.3)

The total error is yielded by summation of all partial errors over all values i.

E =
n∑

i=1

ei =
n∑

i=1

(f(xi; yi)− zi)
2 (3.4)

By insertion the original polynome:

E =
n∑

i=1

(a0 + a1xi + a2xiy
2
i + a3y

27
i − zi)

2 (3.5)

3.1.1 Minimisation of the total error

The error E has to become the lowest possible value in dependance of the coe�cients
a0..3. Thus the partial derivations of E with respect to the coe�cients has to be zero.

S. Zihlmann October 7, 2010 Page 4 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

From this the equations below follow:

∂E

∂a0

=
n∑

i=1

2 · (a0 + a1xi + a2xiy
2
i + a3y

27
i − zi) · (1) = 0 (3.6)

∂E

∂a1

=
n∑

i=1

2 · (a0 + a1xi + a2xiy
2
i + a3y

27
i − zi) · (xi) = 0 (3.7)

∂E

∂a2

=
n∑

i=1

2 · (a0 + a1xi + a2xiy
2
i + a3y

27
i − zi) · (xiy

2
i) = 0 (3.8)

∂E

∂a3

=
n∑

i=1

2 · (a0 + a1xi + a2xiy
2
i + a3y

27
i − zi) · (y27

i) = 0 (3.9)

All equations equal to zero. Hence the factor 2 can be eliminated. By expanding and
moving the zi factor on the other side:

a0

n∑
i=1

1 + a1

n∑
i=1

xi + a2

n∑
i=1

xiy
2
i + a3

n∑
i=1

y27
i =

n∑
i=1

zi (3.10)

a0

n∑
i=1

xi + a1

n∑
i=1

x2
i + a2

n∑
i=1

x2
i y

2
i + a3

n∑
i=1

xiy
27
i =

n∑
i=1

zixi (3.11)

a0

n∑
i=1

xiy
2
i + a1

n∑
i=1

x2
i y

2
i + a2

n∑
i=1

x2
i y

4
i + a3

n∑
i=1

xiy
29
i =

n∑
i=1

zixiy
2
i (3.12)

a0

n∑
i=1

y27
i + a1

n∑
i=1

xiy
27
i + a2

n∑
i=1

xiy
29
i + a3

n∑
i=1

y54
i =

n∑
i=1

ziy
27
i (3.13)

In matrices notation:

n∑
i=1


1 xi xiy

2
i y27

i

xi x2
i x2

i y
2
i xiy

27
i

xiy
2
i x2

i y
2
i x2

i y
4
i xiy

29
i

y27
i xiy

27
i xiy

29
i y54

i

 ·


a0

a1

a2

a3

 =
n∑

i=1

zi


1
xi

xiy
2
i

y27
i

 (3.14)

A common solution is to include these equations into an algorithm what's complicating
the change of the amount of coe�cients during runtime.

3.2 New method for building up the system of

equations

The algorithm intruduced in this work is still based on the system of equations in the
last section. However, it proposes an easy method to build up these equations. The

S. Zihlmann October 7, 2010 Page 5 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

algorithm doesen't take care of solving the equations in the end by the elimination
method.

The elements of the matrix and the vector have to be determined so the matrix equation
3.14 can be solved for the coe�cients. Therefore the measured values in the di�erent
dimensions have to be exponentiated with the right power, afterwards they are multi-
plicated and after all a sumation over all values is needed (see eqn. 3.14). This whole
procedure must be implemented into code as compact as possible.

3.2.1 Exponent-matrices

The method uses the fact that multiplicated factors sum their exponents. The algorithm
builds up tables in advance with the exponents for the di�erent variables for each matrix
element. So they can easily be accessed during calculation of the particular elements
of the matrix. If the equation 3.14 is considered and in new matrices respectively new
vectors of the same size the exponents for x and y are assigned, the following is obtained:

x :


0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

 ,


0
1
1
0

 (3.15)

y :


0 0 2 27
0 0 2 27
2 2 4 29
27 27 29 54

 ,


0
0
2
27

 (3.16)

If these tables were given at the beginning, it was easy to set up the equation 3.14. For
each element and for all measured values the exponents in the tables would be used to
exponentiate xi und yi. These factors would then be multiplicated and the sum for all
values would be built.

3.2.2 Sum of exponents

The question remains how to abtain these table with the exponents in advance. For each
coe�cient one equation can be obtained, thus the matrix is always square and possesses
one solution. Because the equations are not di�erentiated for x or y the exponents won't
change. Once again the original polynome respectively the second derivation of the total
error:

S. Zihlmann October 7, 2010 Page 6 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

f(x; y) = a0 + a1x+ a2xy
2 + a3y

27 (3.17)

∂E

∂a1

=
n∑

i=1

2 · (a0 + a1xi + a2xiy
2
i + a3y

27
i − zi) · (xi) = 0 (3.18)

It's easy realised that the derivations possess always the same pattern. Sigma sign,
factor 2, the original polynome minus the z-value and a factor depending on the actual
coe�cient di�erentiated with respect to. Thus the exponents have always got the pattern
of the polynome combined with the actual coe�cient. The exponents for x and y in the
polynome are assigned to a vector:

x :


0
1
1
0

 ; x :


0
0
2
27

 (3.19)

Due to the polynome always shaping the main structure, a square matrix is �lled with
the obtained x and y exponents.

x :


0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

 ; y :


0 0 2 27
0 0 2 27
0 0 2 27
0 0 2 27

 (3.20)

By the derivation the ith line is multiplied with the according x/y pair of the ith co-
e�cient. Thus the �gures (exponents) of the matrices and vectors can be added up
entry-wise. From this follows that:

x :


0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

+ 1


0
1
1
0

 =


0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

 (3.21)

y :


0 0 2 27
0 0 2 27
0 0 2 27
0 0 2 27

+ 2


0
0
2
27

 =


0 0 2 27
0 0 2 27
2 2 4 29
27 27 29 54

 (3.22)

The right side of the system of equations 3.14 is originally only consisiting of the z-factor.
Due to this fact the exponents for x and y are directly obtained from the exponents of
the polynome. Means:

x :


0
1
1
0

 y :


0
0
2
27

 (3.23)

This way the exponent tables can be built up quite simple.

1Entry-wise
2Entry-wise

S. Zihlmann October 7, 2010 Page 7 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

3.3 Application

In this section the step-by-step construction of the algorithm is explained.

The x-, y-, and z-values have to be fed into the program code. Furthermore the code has
to be supplied with the polynome. The easiest way is to supply the x and y exponents
of the polynome in a dual line array. For the given polynom

f(x; y) = a0 + a1x+ a2xy
2 + a3y

27 (3.24)

the following polynome representing array is obtained:(
x-exponents
y-exponents

)
→
(

0 1 1 0
0 0 2 27

)
(3.25)

Now the exponent matrices must be built up for x and y by extracting the �rst and
second line of the array. The lines are combined to an array with as many lines as
coe�cients avaiable (square matrix). Following the basic matrices:

x :


0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

 ; y :


0 0 2 27
0 0 2 27
0 0 2 27
0 0 2 27

 (3.26)

Now the �rst line of the obtained matrices is extracted and entry-wise added to the
corresponding matrix according 3.22 and previous. The exponents for the solution vector
of the equation 3.14 (right side) are the vectors just extracted (or the transponated
polynome exponents).

x :


0
1
1
0

 , y :


0
0
2
27

 (3.27)

To �nally set up the matrix according eqn. 3.14 for every single entry the sum with
the measured values must be built. Therefore the exponent matrices are used as lookup
table and the particular xi and yi value has to be exponentiated with the right power.
This xa

i is now multiplicated with yb
i where a and b are the exponents in the tables and

i ist the actual datapoint. This must be done with every single datapoint while the sum
is built. For the vector (right side of equation), the zi value must be multiplied as well.
Once the matrix and the vector is set up, the matrix equation is solved by the Gaussian
elimination method.

S. Zihlmann October 7, 2010 Page 8 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

3.4 Generalisation

3.4.1 Expansion to several dimensions

A function is often depending on more than one variable. The function is then de�ned
in n dimensions (domain).

f(D1, D2, ..., Dn) (3.28)

The principle with the exponent matrices can easily be expanded to many dimensions.
For each new dimension a new exponent matrix respectively a vector is needed. Further-
more the polynome representing matrix (see 3.25) has to be completed with a further
line of exponents of the actual dimension.

A demonstrative delivers the calculation of the speci�c resistance of a cylindrical con-
ductor. The resistance is:

R(l, d) = ρ
l

A
= ρ

4 · l
d2π

= 4
ρ

π︸︷︷︸
C

l · d−2 (3.29)

The resistance is measured for di�erent values of length and thickness. The factors 4,
π and ρ are combined to one constanc C. This factor can now be determined by the
regression. The polynome would be prompted to the algorithm in the following pattern:(

1
−2

)
(3.30)

3.4.2 Negative exponents

Fractional polynomes can easily be implemented. Example:

f(x, y) = a0 + a1x+ a2
y

x2
+ a3x

2y + a4
1

y4
(3.31)

The representing matrix for the polynome:

(
x-exponents
y-exponents

)
→
(

0 1 −2 2 0
0 0 1 1 −4

)
(3.32)

Attention: If negative exponents are used, the measured values must not become zero
in any dimension. Else divisions by zero would be generated.

S. Zihlmann October 7, 2010 Page 9 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

3.4.3 Real exponents

As described in the last section, the algorithm can be run with any exponents. This is
also valid for non integer values. Example:

f(x, y) = a0 + a1x+ a2
y0.5

x2
+ a3x

2.79y−0.9 + a4
1

y4.1
(3.33)

The representing matrix for the polynome:

(
0 1 −2 2.79 0
0 0 0.5 −0.9 −4.1

)
(3.34)

3.5 Limitation to linear systems

The desired coe�cients are only in linear dependance allowed. The following example
is not possible:

f(x) = (a0x)
2 + sin(a1x) + a2x+ a2x

2 (3.35)

The last two addends use the same coe�cient.

3.6 Computing time

The computation time is increasing with the square of the �gure of desired coe�cients,
because the equations form square matrices. With increasing number of dimensions the
work is only rising linear. The algorithm is fast anyway. In Scilab3 it's using only 1.45
seconds for 55'696 datapoints in 2 dimensions with 15 coe�cients.

3see proposed algorithm at the end

S. Zihlmann October 7, 2010 Page 10 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

4 Algorithm suggestion

4.1 Basic proposed Scilab algorithm

The free program Scilab implies a large amount of functions. It's particular designed for
matrix operations. Thus the algorithm can be implemented in very short code.

The algorithm must be supplied with three variables. The independent position of the
measured value called 'data', the according measured value 'zval' and the polynome.
The function must be called by 'PowerFit(data,zval,polynome)'. The data has to be the
following shape:

data =

dimensions→
D1,1 D2,1 . . . Dd,1

D1,2 D2,2 . . . Dd,2
...

. . .

D1,n D2,n . . . Dd,n

, zval =


Z1

Z2
...
Zn


n means the number of measured values. d is the number of dimensions where the
polynome is de�ned. The polynome must be prompted in the following shape:

polynome =


P (D1, 1) P (D1, 2) · · · P (D1, k)
P (D2, 1) P (D2, 2) · · · P (D2, k)

...
. . .

P (Dd, 1) P (Dd, 2) · · · P (Dd, k)


Whereas the index Di describes in which dimension the exponent is working. k describes
the number of coe�cients of the polynome, d describes the number of dimensions.

1 //−−
2 // This a l gor i thm c a l c u l a t e s r e g r e s s i on s polynomes o f var ious
3 // dimensions , c o e f f i c i e n t s and any combination o f potences .
4 // Released 22. September 2010 by Serge Zihlmann
5 // THIS CODE IS FREE TO BE USED IN ANY KIND OF SOFTWARE
6 // For f u r t h e r que s t i on s con tac t : p owe r f i t (at@at) th irdway . ch
7 //−−
8 //−−
9 function [y] = PowerFit (data , zval , polynome)

S. Zihlmann October 7, 2010 Page 11 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

10

11 [ndata dim] = s ize (data) ; // Get amount o f da tapo in t s
12

13 // Get number o f f r e e v a r i a b l e s o f polynome
14 [dim nCoef f] = s ize (polynome) ; //Number o f dimensions and c o e f f i c i e n t s
15

16 // Generate exponent t a b l e s
17 ExpMat = zeros (nCoeff , nCoeff , dim) ;
18 for i =1: nCoef f
19 for k=1:dim
20 ExpMat(i , : , k) = polynome (k , :)+ polynome (k , i) ;
21 end

22 end

23 ExpVec = polynome ' ;
24

25 // Generate matr ices to f i l l
26 A = zeros (nCoeff , nCoef f) ; // Fina l matrix
27 b = zeros (nCoeff , 1) ; // Fina l s o l u t i o n vec to r
28

29 // Bui ld up matrix A
30 for i =1: nCoef f
31 for k=1: nCoef f
32 t = ones (ndata , 1) ; // Temporary vec to r
33 for r=1:dim
34 t = t .* (data (: , r) .^ExpMat(i , k , r)) ;
35 end

36 A(i , k) = sum(t) ;
37 end

38 end

39

40 // Bui ld up vec to r b
41 for i =1: nCoef f
42 t = zva l ;
43 for k=1:dim
44 t = t .* (data (: , k) .^ExpVec (i , k)) ;
45 end

46 b(i) = sum(t) ;
47 end

48

49 // So lve the system A*y=b f o r y
50 y = inv (A)*b ; // Ca l cu l a t e so l u t i on , re turn parameters
51 endfunction

52 //−−

Line (11) determines the amount of data. (14) gets the number of coe�cients and
dimension of the prompted polynome whereas the number of dimension of the dataset
has to be equal to the one of the polynome.

In the next step (17-23) the exponent matrices descriped in the last chapter are gener-
ated. The system of equations A · y = b is built up in the lines (30-47). Therefore the
matrix A is �lled entry-wise with the use of the exponent matrices. The solution vector

S. Zihlmann October 7, 2010 Page 12 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

is built after the same procedure but with the additional use of the z-values.

Line (50) solves the resulting system of equations and returns the polynome coe�cients
y.

4.2 Complete set of functions

In the last section only the basic algorithm was described. Two more functions are very
comfortable. 'PrettyPrintF' returns the polynome in a nice shape, so the user can verify
the input. The function can be called with further arguments so individual names for the
dimensions and coe�cients can be assigned. See therefore example 1 & 2. The second
function 'EvalPol' evaluates the polynome using the obtained coe�cients at one point.

1 //−−
2 // This a l gor i thm c a l c u l a t e s r e g r e s s i on s polynomes o f var ious
3 // dimensions , c o e f f i c i e n t s and any combination o f potences .
4 // Released 22. September 2010 by Serge Zihlmann
5 // THIS CODE IS FREE TO BE USED IN ANY KIND OF SOFTWARE
6 // For f u r t h e r que s t i on s con tac t : p owe r f i t (at@at) th irdway . ch
7 //−−
8 //−−
9 function [y] = PowerFit (data , zval , polynome)
10

11 Error = 0 ; // S ta r t w i thou t e r ro r s
12 [ndata dimD] = s ize (data) ; //Get amount o f da tapo in t s
13

14 // ge t number o f f r e e v a r i a b l e s o f polynome
15 [dim nCoef f] = s ize (polynome) ; //Number o f dimensions and c o e f f i c i e n t s
16

17 //Check f o r Errors
18 i f (dim <> dimD)
19 printf (" D i f f e r e n t dimensions o f polynome and data\n") ;
20 Error = 1
21 end

22 i f (ndata <> s ize (zva l))
23 printf (" D i f f e r e n t amount o f data\n") ;
24 Error = 1
25 end

26

27

28 i f (Error <> 1) // only s t a r t i f no e r ro r s occur
29 // genera te exponent t a b l e s
30 ExpMat = zeros (nCoeff , nCoeff , dim) ;
31 for i =1: nCoef f
32 for k=1:dim
33 ExpMat(i , : , k) = polynome (k , :)+ polynome (k , i) ;
34 end

35 end

36 ExpVec = polynome ' ;

S. Zihlmann October 7, 2010 Page 13 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

37

38 // Generate matr ices to f i l l
39 A = zeros (nCoeff , nCoef f) ; // Fina l matrix
40 b = zeros (nCoeff , 1) ; // Fina l s o l u t i o n vec to r
41

42 // Bui ld up matrix A
43 for i =1: nCoef f
44 for k=1: nCoef f
45 t = ones (ndata , 1) ; // Temporary vec to r
46 for r=1:dim
47 t = t .* (data (: , r) .^ExpMat(i , k , r)) ;
48 end

49 A(i , k) = sum(t) ;
50 end

51 end

52

53 // Bui ld up vec to r b
54 for i =1: nCoef f
55 t = zva l ;
56 for k=1:dim
57 t = t .* (data (: , k) .^ExpVec (i , k)) ;
58 end

59 b(i) = sum(t) ;
60 end

61

62 // So lve the system A*y=b f o r y
63 y = inv (A)*b ; // c a l c u l a t e so l u t i on , re turn parameters
64 end // end error
65 endfunction

66 //−−
67 // Eva lua tes polynome with c o e f f i c i e n t s , x=da tapo in t
68 function [y]=EvalPol (polynome , x , c o e f f i c i e n t s)
69 [cx cy] = s ize (polynome) ;
70 y = c o e f f i c i e n t s ' ;
71 for i =1: cx
72 y = y . * (x (i) .^ polynome (i , :)) ;
73 end

74 y = sum(y) ;
75 endfunction

76 //−−
77 //−−Prin t s the input polynome in a p r e t t y shape
78 function [y]=PrettyPrintF (polynom , coeffName , dimName)
79 // p r i n t s out the symbo l ic f unc t i on de f ined in polynom
80 [cx cy] = s ize (polynom)
81 printf ("Regres s ion func t i on : \ n") ;
82 printf ("−−−−−−−−−−−−−−−−−−−−\nf (") ;
83

84 [ax ay] = s ize (dimName) ;
85 [bx by] = s ize (coeffName) ;
86

87 for i =1: cx
88 i f (i<=ay)

S. Zihlmann October 7, 2010 Page 14 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

89 printf ("%s" , dimName(i)) ;
90 else

91 printf ("D%i" , i) ;
92 end

93 i f (i<>cx) printf (" , ") ; end

94 end

95 printf (") = ") ;
96 U = [] ;
97 for i =1: cy
98 i f (i<=by)
99 U = U + coeffName (i) ;
100 else

101 U = U + "a"+string (i) ;
102 end

103

104 for k=1: cx
105 i f (polynom (k , i)<>0)// i f power o f x i s g r ea t e r than zero
106 i f (k<=ay)
107 U = U + dimName(k) ;
108 else

109 U = U + "D" + string (k) ;
110 end

111

112 i f ((polynom (k , i)<>0) & (polynom (k , i)<>1))
113 U = U+"^"+string (polynom (k , i)) ;
114 end

115 end

116 end

117

118 i f (i<cy)
119 U = U + " + " ;
120 end

121 end

122 printf ("%s" ,U) ;
123 printf ("\n\n") ;
124 y = [] ; // dont re turn anyth ing
125 endfunction

4.2.1 EvalPol()

The function must be called EvalPol(A,B,C). A is the polynome in exponent shape. B
is the position where the polynome must be evaluated and C contains the calculated
coe�cients.

S. Zihlmann October 7, 2010 Page 15 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

4.2.2 PrettyPrintF()

This function is called PrettyPrintF(A,B,C). Again A is the polynome. B & C are char
arrays containing the names for the independent variables and for the coe�cients. The
function can also be called PrettyPrintF(A,[],[]). In this case the labeling is generated
automatically.

4.3 Examples for calling the functions

4.3.1 Example 1

1 //−−
2 // This i s a s imple example wi th on ly ba s i c use . Labe l ing
3 // f o r c o e f f i c i e n t s and dimensions i s automatic . No va l u e s
4 // w i l l be p r in t ed out
5 //−−
6

7 // Res tar t programme
8 clear ; // Clear memory
9 c l c ; // Clear d i s p l a y
10 exec (' Funct ions . s c i ') ; // Get f unc t i on s from ex tern f i l e
11

12 // Enter data p o s i t i o n
13 data =[
14 2 2
15 2 3
16 2 4
17 2 5
18 3 2
19 3 3
20 3 4
21 3 5
22] ;
23

24 // Enter va l u e s
25 zva l =[
26 45
27 63
28 83
29 103
30 93
31 138
32 183
33 228
34] ;
35

36 // Input the polynome
37 polynome =[

S. Zihlmann October 7, 2010 Page 16 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

38 0 1 2
39 0 1 1
40] ;
41

42 PrettyPrintF (polynome , [] , []) ; // Print polynome in p r e t t y shape
43 y = PowerFit (data , zval , polynome) ; // Calc polynome (main func t i on)
44

45 x= [2 , 2] ;
46

47 disp (EvalPol (polynome , x , y))
48

49 c l f ;
50

51 xx =0 : 0 . 1 : 6 ; ;
52 yy=−6:0 .1 :7 ;
53

54 for i =1: length (xx)
55 for k=1: length (yy)
56 zz (i , k) = EvalPol (polynome , [xx (i) , yy (k)] , y)
57 end

58 end

59

60

61 plot3d1 (data (: , 1) , data (: , 2) , (zva l) , f l a g =[−1, 2 , 3]) ;
62 plot3d1 (xx , yy , (zz) , f l a g =[−1, 2 , 3]) ;

4.3.2 Example 2

1 //−−
2 // This i s an asvanced example which a l s o d e f i n e s your own
3 // l a b e l i n g f o r c o e f f i c i e n t s and dimensions . Furthermore
4 // p l o t s are generated and va l u e s wiht the c a l c u l a t e d poly−
5 // nome are p l o t e d . But the data i s on ly one dimensiona l
6 //−−
7

8 // Res tar t programme
9 clear ; // Clear memory
10 c l c ; // Clear d i s p l a y
11 c l f ; // Clear p l o t
12 exec (' Funct ions . s c i ') ; //Get f unc t i on s from ex tern f i l e
13

14 // Enter measured data : Main input s e c t i on
15 data =[// Define da t a s e t
16 1 ; 2 ; 3 ; 3 . 5 ; 4 ; 5 ; 6] ;
17

18 zva l =[// Define va l u e s accord ing to da t a s e t
19 9 ; 2 ; 3 ; 4 . 5 ; 6 ; 5 ; 4] ;
20

21 // Input the polynome
22 polynome =[

S. Zihlmann October 7, 2010 Page 17 of 18

Lin. reg. of multi dimensional polynomes with arbitrary coe�cients

23 0 1 −1 2
24] ;
25

26 // Enter names f o r c o e f f i c i e n t s and dimensions
27 dimNames = ["x"] ; // Labe l o f dimensions
28 coeffNames = ["a" "b" "c" "d" "e" " f " "g"] ; // Names o f dimensions
29

30 // Generate automatic names i f miss ing
31 [cx cy] = s ize (coeffNames) ;
32 for i =1: length (polynome (1 , :))
33 i f (i>cy)
34 coeffNames (1 , i) = "a" + string (i) ;
35 end

36 end

37 clear cx , cy ;
38

39 // Pr in tout polynome formula in p r e t t y shape
40 PrettyPrintF (polynome , [] , []) ; // Print wi th auto names
41 PrettyPrintF (polynome , coeffNames , dimNames) ; // Print wi th own names
42

43 // Pr in tout r e s u l t s (main c a l c u l a t i o n)
44 printf ("Result : \ n−−−−−−−\n") ;
45 y = PowerFit (data , zval , polynome) ; // Calc polynome (main func t i on)
46 [cx cy] = s ize (y) ;
47 disp ([coeffNames (1 : cx) ' string (y)]) ; // Pr in tout c o e f f i c i e n t s
48 clear cx , cy ;
49

50 // Generate n ice p l o t s
51 plot (data , zval , " or ") ; // Plo t entered data
52 D = (max(data)−min(data)) * 1 . 0 5 / 2 ;
53 C = (min(data)+max(data)) / 2 ;
54 xx = C−D: 0 . 1 :C+D; // Generate x area
55 for i =1: length (xx) // Ca l cu l a t e corresponding va l u e s
56 yy (i) = sum((xx (i) .^ polynome) . * (y ')) ;
57 end

58 plot (xx , yy) // Plo t r e g r e s s i on polynome

All scilab �les with additional examples can be downloaded from http://www.thirdway.ch.

��������������������

S. Zihlmann October 7, 2010 Page 18 of 18

http://www.thirdway.ch

	Abstract
	Introduction
	Description of the issue and solution
	Method of least squares
	Minimisation of the total error

	New method for building up the system of equations
	Exponent-matrices
	Sum of exponents

	Application
	Generalisation
	Expansion to several dimensions
	Negative exponents
	Real exponents

	Limitation to linear systems
	Computing time

	Algorithm suggestion
	Basic proposed Scilab algorithm
	Complete set of functions
	EvalPol()
	PrettyPrintF()

	Examples for calling the functions
	Example 1
	Example 2

